Rheni

nguyên tố hóa học của nguyên tử số 75, một kim loại màu trắng bạc hiếm xuất hiện với lượng vết trong molypden và các kim loại khác.
(Đổi hướng từ Rhenium)

Rheni (tiếng Latinh: Rhenium) là một nguyên tố hóa học có ký hiệu Resố nguyên tử 75. Nó là một kim loại chuyển tiếp nặng, màu trắng bạc nằm tại hàng ba của nhóm 7 trong bảng tuần hoàn. Với mật độ trung bình cỡ một phần tỷ (ppb), rheni là một trong những nguyên tố hiếm nhất trong lớp vỏ Trái Đất. Rheni tương tự như mangan về mặt hóa học và thu được dưới dạng phụ phẩm trong tinh chế molypdenđồng. Ở dạng hợp chất, rheni thể hiện các trạng thái oxy hóa từ −1 tới +7.

Rheni, 75Re
Tính chất chung
Tên, ký hiệuRheni, Re
Phiên âm/ˈrniəm/ REE-nee-əm
Hình dạngXám trắng
Rheni trong bảng tuần hoàn
Hydro (diatomic nonmetal)
Heli (noble gas)
Lithi (alkali metal)
Beryli (alkaline earth metal)
Bor (metalloid)
Carbon (polyatomic nonmetal)
Nitơ (diatomic nonmetal)
Oxy (diatomic nonmetal)
Fluor (diatomic nonmetal)
Neon (noble gas)
Natri (alkali metal)
Magnesi (alkaline earth metal)
Nhôm (post-transition metal)
Silic (metalloid)
Phosphor (polyatomic nonmetal)
Lưu huỳnh (polyatomic nonmetal)
Chlor (diatomic nonmetal)
Argon (noble gas)
Kali (alkali metal)
Calci (alkaline earth metal)
Scandi (transition metal)
Titani (transition metal)
Vanadi (transition metal)
Chrom (transition metal)
Mangan (transition metal)
Sắt (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Đồng (transition metal)
Kẽm (transition metal)
Gali (post-transition metal)
Germani (metalloid)
Arsenic (metalloid)
Seleni (polyatomic nonmetal)
Brom (diatomic nonmetal)
Krypton (noble gas)
Rubidi (alkali metal)
Stronti (alkaline earth metal)
Yttri (transition metal)
Zirconi (transition metal)
Niobi (transition metal)
Molypden (transition metal)
Techneti (transition metal)
Rutheni (transition metal)
Rhodi (transition metal)
Paladi (transition metal)
Bạc (transition metal)
Cadmi (transition metal)
Indi (post-transition metal)
Thiếc (post-transition metal)
Antimon (metalloid)
Teluri (metalloid)
Iod (diatomic nonmetal)
Xenon (noble gas)
Caesi (alkali metal)
Bari (alkaline earth metal)
Lantan (lanthanide)
Ceri (lanthanide)
Praseodymi (lanthanide)
Neodymi (lanthanide)
Promethi (lanthanide)
Samari (lanthanide)
Europi (lanthanide)
Gadolini (lanthanide)
Terbi (lanthanide)
Dysprosi (lanthanide)
Holmi (lanthanide)
Erbi (lanthanide)
Thulium (lanthanide)
Ytterbi (lanthanide)
Luteti (lanthanide)
Hafni (transition metal)
Tantal (transition metal)
Wolfram (transition metal)
Rheni (transition metal)
Osmi (transition metal)
Iridi (transition metal)
Platin (transition metal)
Vàng (transition metal)
Thuỷ ngân (transition metal)
Thali (post-transition metal)
Chì (post-transition metal)
Bismuth (post-transition metal)
Poloni (metalloid)
Astatin (diatomic nonmetal)
Radon (noble gas)
Franci (alkali metal)
Radi (alkaline earth metal)
Actini (actinide)
Thori (actinide)
Protactini (actinide)
Urani (actinide)
Neptuni (actinide)
Plutoni (actinide)
Americi (actinide)
Curium (actinide)
Berkeli (actinide)
Californi (actinide)
Einsteini (actinide)
Fermi (actinide)
Mendelevi (actinide)
Nobeli (actinide)
Lawrenci (actinide)
Rutherfordi (transition metal)
Dubni (transition metal)
Seaborgi (transition metal)
Bohri (transition metal)
Hassi (transition metal)
Meitneri (unknown chemical properties)
Darmstadti (unknown chemical properties)
Roentgeni (unknown chemical properties)
Copernici (transition metal)
Nihoni (unknown chemical properties)
Flerovi (post-transition metal)
Moscovi (unknown chemical properties)
Livermori (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)
Tc

Re

Bh
WolframRheniOsmi
Số nguyên tử (Z)75
Khối lượng nguyên tử chuẩn (Ar)186,207
Phân loại  kim loại chuyển tiếp
Nhóm, phân lớp7d
Chu kỳChu kỳ 6
Cấu hình electron[Xe] 4f14 5d5 6s2
mỗi lớp
2, 8, 18, 32, 13, 2
Tính chất vật lý
Màu sắcXám trắng
Trạng thái vật chấtChất rắn
Nhiệt độ nóng chảy3459 K ​(3186 °C, ​5767 °F)
Nhiệt độ sôi5869 K ​(5596 °C, ​10105 °F)
Mật độ21,02 g·cm−3 (ở 0 °C, 101.325 kPa)
Mật độ ở thể lỏngở nhiệt độ nóng chảy: 18,9 g·cm−3
Nhiệt lượng nóng chảy60,43 kJ·mol−1
Nhiệt bay hơi704 kJ·mol−1
Nhiệt dung25,48 J·mol−1·K−1
Áp suất hơi
P (Pa) 1 10 100 1 k 10 k 100 k
ở T (K) 3303 3614 4009 4500 5127 5954
Tính chất nguyên tử
Trạng thái oxy hóa7, 6, 5, 4, 3, 2, 1, 0, -1Acid nhẹ
Độ âm điện1,9 (Thang Pauling)
Năng lượng ion hóaThứ nhất: 760 kJ·mol−1
Thứ hai: 1260 kJ·mol−1
Thứ ba: 2510 kJ·mol−1
Bán kính cộng hoá trịthực nghiệm: 137 pm
Bán kính liên kết cộng hóa trị151±7 pm
Thông tin khác
Cấu trúc tinh thểLục phương
Cấu trúc tinh thể Lục phương của Rheni
Vận tốc âm thanhque mỏng: 4700 m·s−1 (ở 20 °C)
Độ giãn nở nhiệt6,2 µm·m−1·K−1
Độ dẫn nhiệt48,0 W·m−1·K−1
Điện trở suấtở 20 °C: 193 n Ω·m
Tính chất từThuận từ[1]
Mô đun Young463 GPa
Mô đun cắt178 GPa
Mô đun khối370 GPa
Hệ số Poisson0,30
Độ cứng theo thang Mohs7,0
Độ cứng theo thang Vickers2450 MPa
Độ cứng theo thang Brinell1320 MPa
Số đăng ký CAS7440-15-5
Đồng vị ổn định nhất
Bài chính: Đồng vị của Rheni
Iso NA Chu kỳ bán rã DM DE (MeV) DP
185Re 37.4% 185Re ổn định với 110 neutron[2]
186Re Tổng hợp 3,7185 ngày β- - 186Os
ε - 187W
187Re 62.6% 4,12×1010 năm[3] β-[4] 0.0026 187Os

Các lượng nhỏ rheni được thêm vào các hợp kim wolfram, và một số hợp chất của rheni cũng được dùng làm chất xúc tác trong công nghiệp hóa chất. Các siêu hợp kim gốc nickel được sử dụng trong các động cơ phản lực chứa tới 6% rheni, làm cho ngành này là nơi sử dụng rheni lớn nhất. Do khan hiếm và nhu cầu cao trong chế tạo động cơ phản lực nên rheni thuộc số các kim loại đắt nhất trên thế giới, với giá của nó có những lúc vượt quá 12.000 USD mỗi kilôgam. Rheni, được phát hiện năm 1925, là nguyên tố có đồng vị ổn định trong tự nhiên cuối cùng được phát hiện. Franci là nguyên tố nguồn gốc tự nhiên cuối cùng được phát hiện, nhưng nó không có đồng vị nào ổn định. Rheni được đặt tên theo sông Rhine.

Lịch sử

sửa

Rheni (từ tiếng Latinh Rhenus, nghĩa là Rhine)[5] là nguyên tố nguồn gốc tự nhiên được phát hiện gần sau cùng nhất, chỉ trước Franci; đồng thời nó là nguyên tố có đồng vị ổn định được phát hiện cuối cùng[6]. Sự tồn tại của nguyên tố tại vị trí của rheni (khi đó chưa được phát hiện) trong bảng tuần hoàn đã được Henry Moseley dự báo từ năm 1914[7]. Nói chung người ta gán công phát hiện ra rheni cho Walter Noddack, Ida Tacke, Otto BergĐức. Năm 1925, họ thông báo rằng họ đã phát hiện ra một nguyên tố có trong quặng platin và trong khoáng vật columbit. Họ cũng tìm thấy rheni trong gadolinitmolybdenit[8]. Năm 1928, họ đã tách ra được 1 g nguyên tố bằng cách xử lý 660 kg khoáng vật molybdenit[9]. Quy trình này quá phức tạp và tốn kém đến mức việc sản xuất bị gián đoạn tới tận đầu năm 1950 khi các hợp kim wolfram-rheni và molypden-rheni được điều chế. Các hợp kim này được phát biện là có nhiều ứng dụng quan trọng trong công nghiệp tạo ra một nhu cầu lớn đối với rheni được sản xuất từ phần molybdenit của các quặng đồng pocfia.

Năm 1908, nhà hóa học Nhật BảnMasataka Ogawa thông báo rằng ông đã phát hiện ra nguyên tố số 43 và đặt tên nó là nipponium (Np) theo sau tên của Nhật Bản (là Nippon trong tiếng Nhật). Tuy nhiên, phân tích sau đó chỉ ra sự hiện diện của rheni (số 75), chứ không phải nguyên tố số 43[10]. Ký hiệu Np sau này được sử dụng cho nguyên tố neptuni (số 93).

Đặc trưng

sửa
 
Một giọt Rheni

Rheni là kim loại có nhiệt độ nóng chảy thuộc hàng cao nhất trong số mọi nguyên tố, chỉ có wolfram (3.695 K) và carbon (4.300-4.700 K) là đứng trên nó. Nó cũng là nguyên tố có tỷ trọng riêng thuộc hàng cao nhất, chỉ thua platin (21.450 kg/m³), iridi (22.560 kg/m³) và osmi (22.610 kg/m³).

Dạng thương mại thông thường của nó là bột, nhưng nguyên tố này có thể cô đặc hơn bằng cách ép và thiêu kết trong chân không hay môi trường khí hydro. Quy trình này tạo ra sản phẩm chắc đặc với tỷ trọng khoảng trên 90% tỷ trọng riêng của kim loại này. Khi bị kim loại này trở nên rất mềm và có thể uốn cong hay kéo thành cuộn[11]. Các hợp kim rheni-molypden có tính siêu dẫn ở 10 K; còn các hợp kim wolfram-rheni cũng có tính siêu dẫn[12] ở khoảng 4-8 K, phụ thuộc vào từng hợp kim. Rheni kim loại siêu dẫn ở 2,4 K[13][14].

Đồng vị

sửa

Rheni nguồn gốc tự nhiên là 37,4% Re185, một đồng vị ổn định, và 62,6% Re187, một đồng vị không ổn định nhưng có chu kỳ bán rã rất dài (~1010 năm); với thời gian tồn tại chịu ảnh hưởng bởi trạng thái tích điện của nguyên tử rheni[15][16]. Phân rã beta của Re187 được sử dụng để định tuổi rheni-osmi của quặng. Năng lượng cần thiết cho phân rã beta này (2,6 keV) là một trong số những mức năng lượng thấp nhất trong số mọi hạt nhân phóng xạ. Người ta cũng đã biết 26 đồng vị phóng xạ khác của rheni[17].

Các hợp chất

sửa

Rheni có một khoảng rộng nhất các trạng thái oxy hóa trong số mọi nguyên tố đã biết: −1, 0, +1, +2, +3, +4, +5, +6 và +7[18]. Các trạng thái oxy hóa +7, +6, +4 và +2 là phổ biến nhất[18].

Các hợp chất phổ biến nhất của rheni là các oxide và các halide, chiếm một phổ rộng các trạng thái oxy hóa: Re2O7, ReO3, Re2O5, ReO2 và Re2O3 là các oxide đã biết, ReF7, ReCl6, ReCl5, ReCl4ReCl3 là một ít các hợp chất halide đã biết[19]. Các sulfide bao gồm ReS2Re2S7[19].

Rheni có sẵn ở dạng thương mại nhiều nhất là perrhenat natriperrhenat amoni. Nó cũng có sẵn ở dạng decacarbonyl dirheni; cả ba hợp chất này đều là các chất khởi đầu phổ biến cho hóa học rheni. Các dạng muối perrhenat khác cũng có thể dễ dàng chuyển hóa thành tetrathioperrhenat theo phản ứng của bisulfide ammoni[20]. Cũng có thể khử decacarbonyl dirheni Re2(CO)10 bằng phản ứng với hỗn hống natri thành Na[Re(CO)5], với rheni ở trạng thái oxy hóa chính thức là -1.[21] Decacarbonyl dirheni có thể phản ứng với brom để tạo ra bromopentacarbonylrheni (I)[22], sau đó khử bằng kẽmacid axetic thành pentacarbonylhydridorheni:[23]

Re2(CO)10 + Br2 → Re(CO)5Br
Re(CO)5Br + Zn + HOAc → Re(CO)5H + ZnBr(OAc)

Bromopentacarbonylrheni (I) có thể bị khử carbonyl để tạo ra tricarbonyl rheni bằng cách cho tác dụng với nước:[24]

Re(CO)5Br + 3 H2O → [Re(CO)3(H2O)3]Br + 2 CO

hay cho phản ứng với bromide tetraetylammoni:[25]

Re(CO)5Br + 2 (NEt4Br → [NEt4]2[Re(CO)3Br3]

Rheni diboride (ReB2) là một chất có độ cứng tương tự như carbide wolfram, carbide silic, diborua titan hay diborua zirconi[26].

Rheni ban đầu được cho là tạo ra anion rhenide, Re
, trong đó nó có trạng thái oxy hóa −1. Điều này dựa trên sản phẩm khử các muối perrhenat, chẳng hạn như khử perrhenat kali (KReO
4
) bằng kali kim loại[27] "Kali rhenide" được chỉ ra là tồn tại dưới dạng phức chất ngậm bốn phân tử nước, tương ứng với công thức hóa học KRe•4H
2
O
[28]. Hợp chất này thể hiện tính khử mạnh, và chậm chạp sinh ra khí hiđrô khi hòa tan trong nước. Các hợp chất tương tự của lithitali cũng được thông báo. Tuy nhiên, nghiên cứu sau này chỉ ra rằng ion "rhenide" trên thực tế là phức hợp hydridorhenat. "Kali rhenide" như thể hiện thực tế là nonahydridorhenat, K
2
ReH
9
, chứa anion ReH2−
9
trong đó trạng thái oxy hóa của rheni thực tế là +7[29][30]. Các phương pháp khác khử các muối perrhenat sinh ra các hợp chất chứa các phức hợp hydrido- khác, bao gồm ReH
3
(OH)
3
(H
2
O)

.[31]

Phổ biến

sửa
 
Molybdenite

Rheni là một trong những nguyên tố hiếm nhất trong lớp vỏ Trái Đất với mật độ trung bình 1 ppb;[19] các nguồn khác đưa ra con số 0,5 ppb, làm cho nó chỉ chiếm vị trí thứ 77 về độ phổ biến trong lớp vỏ Trái Đất.[32] Rheni có lẽ không ở dạng tự do trong tự nhiên, nhưng chiếm khối lượng tới 0,2 %[19] trong khoáng vật molybdenit, là nguồn sản xuất thương mại của nó, mặc dù các mẫu molybdenit riêng lẻ có thể chứa tới 1,88% rheni cũng đã được tìm thấy[33]. Chile là nguồn dự trữ rheni lớn nhất thế giới, một phần của các mỏ quặng đồng, và đồng thời cũng là nhà sản xuất hàng đầu tính tới năm 2005[34]. Chỉ gần đây thì người ta mới tìm thấy và miêu tả khoáng vật đầu tiên của rheni (năm 1994), đó là một khoáng vật sulfide của rheni (ReS2), ngưng tụ từ lỗ phun khí trên núi lửa Kudriavy của Nga, nằm trên quần đảo Kuril[35]. Được đặt tên là rheniit, khoáng vật hiếm này có giá rất cao đối với các nhà sưu tập[36], nhưng nó lại không là nguồn có giá trị kinh tế đối với nguyên tố này.

Sản xuất

sửa
 
Perrhenat ammoni

Rheni thương mại được tách ra từ khí ống khói lò nung molypden thu được từ các quặng sulfide đồng. Một số quặng molypden chứa 0,001% tới 0,2% rheni[19][33] Oxide rheni (VII)acid perrhenic dễ dàng hòa tan trong nước; chúng được lọc từ bụi và khí ống khói, tách ra bằng cách cho kết tủa với chloride kali hay chloride ammoni dưới dạng các muối perrhenat, và tinh chế bằng tái kết tinh[37]. Tổng sản lượng sản xuất toàn thế giới khoảng 40-50 tấn/năm; các nhà sản xuất chính là Chile, Hoa Kỳ, Kazakhstan[38]. Tái chế chất xúc tác Pt-Re cùng các hợp kim đặc biệt đã sử dụng cho phép thu hồi khoảng 10 tấn mỗi năm. Giá của kim loại này tăng nhanh trong đầu năm 2008, từ khoảng $1.000–$2.000 mỗi kilôgam trong giai đoạn 2003-2006 tới trên $10.000 trong tháng 2 năm 2008[39][40]. Dạng kim loại được điều chế bằng cách khử perrhenat ammoni với hiđrô ở nhiệt độ cao:[37]

2 NH4ReO4 + 7 H2 → 2 Re + 8 H2O + 2 NH3

Ứng dụng

sửa
 
Động cơ F-15 sử dụng rheni có trong siêu hợp kim thế hệ 2

Rheni được bổ sung vào các siêu hợp kim chịu nhiệt độ cao sử dụng trong chế tạo các bộ phận của động cơ phản lực, chiếm tới 70% sản lượng rheni toàn thế giới[41]. Ứng dụng lớn khác là trong các chất xúc tác platin-rheni, được sử dụng chủ yếu trong sản xuất xăng có chỉ số octan cao và không chứa chì[38][42].

Hợp kim

sửa

Các siêu hợp kim trên cơ sở nickel có độ dão được cải thiện khi có sự bổ sung rheni. Các hợp kim thường chứa 3% tới 6% rheni[43]. Các hợp kim thế hệ hai chứa 3%; chúng được sử dụng trong các động cơ của F-15 và F-16, trong khi các hợp kim thế hệ ba đơn tinh thể mới chứa 6% rheni; chúng được sử dụng trong động cơ của F-22 và F-35[42][44]. Mức tiêu thụ năm 2006 được đưa ra là 28% cho General Electric, 28% cho Rolls-Royce plc và 12% cho Pratt & Whitney, tất cả đều là siêu hợp kim, trong khi sử dụng làm chất xúc tác chỉ chiếm 14% và toàn bộ các ứng dụng khác là 18 %[41]. Năm 2006, 77% lượng rheni tiêu thụ tại Hoa Kỳ là trong các hợp kim[42].

Rheni cải thiện các tính chất của wolfram và vì thế là vật liệu tạo hợp kim quan trọng nhất đối với wolfram. Các hợp kim wolfram-rheni là mềm hơn ở nhiệt độ thấp làm cho chúng dễ dàng hơn trong việc gia công cơ khí, trong khi độ ổn định ở nhiệt độ cao cũng được cải thiện. Tác động này tăng lên theo hàm lượng rheni, và vì thế các hợp kim wolfram được sản xuất để chứa tới 27% Re, nó cũng là giới hạn độ hòa tan[45]. Một ứng dụng cho các hợp kim wolfram-rheni là các nguồn tia X. Điểm nóng chảy cao của cả hai thành phần tạo hợp kim, cùng với khối lượng nguyên tử lớn, làm cho chúng ổn định trước va chạm của các electron kéo dài[46]. Các hợp kim rheni của wolfram cũng được dùng như là các cặp nhiệt điện để đo nhiệt độ lên tới 2.200 °C[47].

Độ ổn định trước nhiệt độ cao, áp suất hơi thấp, độ kháng mài mòn tốt và khả năng chống lại ăm mòn hồ quang của rheni là hữu ích trong chế tạo các công tắc điện tự làm sạch. Cụ thể, các tia lửa điện xuất hiện trong quá trình chuyển mạch sẽ oxy hóa các tiếp điểm. Tuy nhiên, oxide rheni Re2O7 có độ ổn định thấp (thăng hoa ở ~360 °C) và vì thế bị loại bỏ trong quá trình đóng mở mạch[41].

Rheni có nhiệt độ nóng chảy cao và áp suất hơi thấp tương tự như tantali và wolfram, tuy nhiên, rheni tạo thành các oxide không bay hơi. Vì thế, các sợi rheni thể hiện độ ổn định cao nếu như chúng được vận hành không phải là trong chân không mà là trong môi trường khí quyển chứa oxy[48]. Các sợi này được sử dụng rộng rãi trong phổ khối lượng, trong áp kế ion hóa[49] và trong các đèn flash trong nhiếp ảnh.[50].

Chất xúc tác

sửa

Rheni trong dạng hợp kim rheni-platin được sử dụng làm chất xúc tác trong cải tạo xúc tác (catalytic reforming), là một quy trình hóa học chuyển hóa các ligroin xăng dầu với chỉ số octan thấp thành các sản phẩm lỏng với chỉ số octan cao. Trên thế giới, 30% chất xúc tác sử dụng cho quy trình này có chứa rheni[51]. Hoán đổi olefin là phản ứng khác trong đó rheni cũng được dùng làm chất xúc tác. Thông thường Re2O7 trên alumina được sử dụng cho quy trình này[52]. Các xúc tác rheni kháng lại khá tốt trước độc tố hóa học từ nitơ, lưu huỳnh và phosphor, và vì thế được dùng trong một số loại phản ứng hiđrô hóa nhất định[11][53][54].

Khác

sửa

Các đồng vị Re188 và Re186 có tính phóng xạ và được dùng trong điều trị ung thư gan. Cả hai đều có độ sâu thâm nhập tương tự trong mô (5 mm cho Re186 và 11 mm cho Re188), nhưng Re186 có ưu thế do có thời gian tồn tại lâu hơn (90 giờ so với 17 giờ)[55][56].

Có liên quan bởi tính chu kỳ, rheni có tính chất hóa học tương tự như tecneti; công việc thực hiện với nhãn rheni về phía các mục tiêu thường có thể được thực hiện giống như với tecneti. Điều này là hữu ích cho dược phóng xạ, trong đó rất khó làm việc với tecneti - đặc biệt là đồng vị Tc99m sử dụng trong y học - do giá thành cao và chu kỳ bán rã ngắn của nó[55][57].

Phòng ngừa

sửa

Người ta biết rất ít về độc tính của rheni và các hợp chất của nó, do chúng chỉ được sử dụng với các lượng rất nhỏ. Các muối hòa tan, như các halide hay các perrhenat của rheni, có thể là nguy hại do các nguyên tố khác không phải rheni hoặc có thể là do chính rheni[58]. Chỉ một số ít các hợp chất của rheni đã được thử nghiệm về độc tính; hai mẫu thử là perrhenat kali và trichloride rheni, được tiêm ở dạng lỏng vào chuột. Perrhenat có LD50 là 2.800 mg/kg sau 7 ngày và trichloride rheni có LD50 là 280 mg/kg[59].

Tham khảo

sửa
  1. ^ Magnetic susceptibility of the elements and inorganic compounds Lưu trữ 2012-01-12 tại Wayback Machine, in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ Được cho là trải qua quá trình phân rã alpha thành 181Ta.
  3. ^ Có thể trải qua phân rã β- ở trạng thái giới hạn với chu kỳ bán rã 32,9 năm khi bị ion hóa hoàn toàn.
  4. ^ Theo lý thuyết cũng trải qua quá trình phân rã alpha thành 183Ta.
  5. ^ Tilgner, Hans Georg (2000). Forschen Suche und Sucht (bằng tiếng Đức). Books on Demand. ISBN 9783898112727.
  6. ^ “Rhenium: Statistics and Information”. Minerals Information. USGS. 2008. Truy cập ngày 3 tháng 2 năm 2008.
  7. ^ Moseley, Henry (1914). “High Frequency Spectra of the Elements, Part II”. Philosophical Magazine. Bản gốc lưu trữ ngày 22 tháng 1 năm 2010. Truy cập ngày 15 tháng 7 năm 2009. Đã bỏ qua tham số không rõ |poages= (trợ giúp)
  8. ^ W. Noddack & Tacke I.; Berg O. (1925). “Die Ekamangane”. Naturwissenschaften. 13 (26): 567–574. doi:10.1007/BF01558746.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  9. ^ W. Noddack & Noddack I. (1929). “Die Herstellung von einem Gram Rhenium”. Zeitschrift für anorganische und allgemeine Chemie (bằng tiếng Đức). 183 (1): 353–375. doi:10.1002/zaac.19291830126.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  10. ^ Yoshihara, H. K. (2004). “Discovery of a new element 'nipponiumʼ: re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa”. Spectrochimica Acta Part B Atomic Spectroscopy. 59: 1305–1310. doi:10.1016/j.sab.2003.12.027.
  11. ^ a b Hammond, C. R. (2004). The Elements, in Handbook of Chemistry and Physics 81th edition. CRC press. ISBN 0849304857.
  12. ^ V. S. Neshpor;Novikov V. I.; Noskin V. A.; Shalyt S. S. (1968). “Superconductivity of Some Alloys of the Tungsten-rhenium-carbon System”. Soviet Physics JETP. 27: 13. Bibcode:1968JETP...27...13N.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  13. ^ J. G. Daunt & Smith T. S. (1952). “Superconductivity of Rhenium”. Physical Review. 88 (2): 309–311. doi:10.1103/PhysRev.88.309.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  14. ^ Daunt J. G.; Lerner E. “The Properties of Superconducting Mo-Re Alloys”. Defense Technical Information Center.Quản lý CS1: nhiều tên: danh sách tác giả (liên kết)[liên kết hỏng]
  15. ^ Johnson, Bill (1993). “How to Change Nuclear Decay Rates”. Truy cập ngày 21 tháng 2 năm 2009.
  16. ^ Bosch (1996). “Observation of bound-state β– decay of fully ionized 187Re:187Re-187Os Cosmochronometry”. Physical Review Letters. 77 (26): 5190–5193. doi:10.1103/PhysRevLett.77.5190.
  17. ^ Georges, Audi (2003). “The NUBASE Evaluation of Nuclear and Decay Properties”. Nuclear Physics A. Atomic Mass Data Center. 729: 3–128. doi:10.1016/j.nuclphysa.2003.11.001.
  18. ^ a b Arnold F. Holleman;Wiberg Egon; Wiberg Nils (1985). “Rhenium”. Lehrbuch der Anorganischen Chemie (bằng tiếng Đức) . Walter de Gruyter. tr. 1118–1123. ISBN 3110075113.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  19. ^ a b c d e Woolf, A. A. (1961). “An outline of rhenium chemistry”. Quarterly Review of the Chemical Society. 15: 372–391. doi:10.1039/QR9611500372.
  20. ^ J. T. Goodman & Rauchfuss T. B. (2002). “Tetraethylammonium-tetrathioperrhenate [Et4N][ReS4]”. Inorganic Syntheses. 33: 107–110.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  21. ^ Breimair Josef (1990). “Nucleophile Addition von Carbonylmetallaten an kationische Alkin-Komplexe [CpL2M(η2-RC≡CR)]+ (M = Ru, Fe): μ-η1:η1-Alkin-verbrückte Komplexe”. Chemische Berichte. 123: 7. doi:10.1002/cber.19901230103.
  22. ^ Steven P. Schmidt;Trogler William C.; Basolo Fred (1990). “Pentacarbonylrhenium Halides”. Inorganic Syntheses. 28: 154–159. doi:10.1002/9780470132593.ch42.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  23. ^ Michael A. Urbancic, John R. Shapley (1990). “Pentacarbonyl hydridorheni”. Inorganic Syntheses. 28: 165–168. doi:10.1002/9780470132593.ch43.
  24. ^ N. Lazarova;James S.; Babich J.; Zubieta J. (2004). “A convenient synthesis, chemical characterization and reactivity of [Re(CO)3(H2O)3]Br: the crystal and molecular structure of [Re(CO)3(CH3CN)2Br]”. Inorganic Chemistry Communications. 7 (9): 1023–1026. doi:10.1016/j.inoche.2004.07.006.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  25. ^ R. Alberto;Egli A.; Abram U.; Hegetschweiler K.; Gramlich V.; Schubiger P. A. (1994). “Synthesis and reactivity of [NEt4]2[ReBr3(CO)3]. Formation and structural characterization of the clusters [NEt4][Re33-OH)(µ-OH)3(CO)9] and [NEt4][Re2(µ-OH)3(CO)6] by alkaline titration”. J. Chem. Soc., Dalton Trans.: 2815–2820. doi:10.1039/DT9940002815.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  26. ^ Jiaqian Qin;He Duanwei; Wang Jianghua; Fang Leiming; Lei Li; Li Yongjun; Hu Juan; Kou Zili; Bi Yan (2008). “Is Rhenium Diboride a Superhard Material?”. Advanced Materials. 20: 4780–4783. doi:10.1002/adma.200801471.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  27. ^ Cobble J. W. (1957). “On the Structure of the Rhenide Ion”. The Journal of Physical Chemistry. 61 (6): 727–729. doi:10.1021/j150552a005.
  28. ^ Bravo Justo B.;Ernest Griswold;Jacob Kleinberg (1954). “The Preparation of a Solid Rhenide”. The Journal of Physical Chemistry. 58 (1): 18–21. doi:10.1021/j150511a004.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  29. ^ Floss J. G.;Grosse A. V. (1960). “Alkali and alkaline earth rhenohydrides”. Journal of Inorganic and Nuclear Chemistry. 16: 36–43. doi:10.1016/0022-1902(60)80083-8.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  30. ^ Kenneth Malcolm Mackay;Rosemary Ann Mackay;W. Henderson (2002). Rosemary Ann Mackay (biên tập). Introduction to modern inorganic chemistry . CRC Press. tr. 368–369. ISBN 0748764208.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  31. ^ M. L. H. Green;D. J. Jones (1965). H.J. Emeleus, A.G. Sharpe (biên tập). Advances in inorganic chemistry and radiochemistry. Academic Press. tr. 169–172. ISBN 0120236079.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  32. ^ Emsley, John (2001). “Rhenium”. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, Anh: Nhà in Đại học Oxford. tr. 358–360. ISBN 0-19-850340-7.
  33. ^ a b Rouschias George (1974). “Recent advances in the chemistry of rhenium”. Chemical Reviews. 74: 531. doi:10.1021/cr60291a002.
  34. ^ Anderson, Steve T. “2005 Minerals Yearbook: Chile” (PDF). USGS. Truy cập ngày 26 tháng 10 năm 2008.
  35. ^ M.A. Korzhinsky;Tkachenko S. I.; Shmulovich K. I.; Taran Y. A.; Steinberg G. S. (ngày 5 tháng 5 năm 2004). “Discovery of a pure rhenium mineral at Kudriavy volcano”. Nature. 369: 51–52. doi:10.1038/369051a0.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  36. ^ “The Mineral Rheniite”. Amethyst Galleries,Inc.
  37. ^ a b Patnaik, Pradyot (2003). Handbook of Inorganic Chemicals. McGraw-Hill. tr. 790. ISBN 0070494398. OCLC 47726843.
  38. ^ a b Magyar, Michael J. (2008). “Rhenium” (PDF). Mineral Commodity Summaries. USG S. Truy cập ngày 17 tháng 2 năm 2008.
  39. ^ “MinorMetal prices”. minormetals.com. Bản gốc lưu trữ ngày 15 tháng 5 năm 2008. Truy cập ngày 17 tháng 2 năm 2008.
  40. ^ Harvey, Jan (ngày 10 tháng 7 năm 2008). “Analysis: Super hot metal rhenium may reach "platinum prices". Reuters India. Bản gốc lưu trữ ngày 11 tháng 1 năm 2009. Truy cập ngày 26 tháng 10 năm 2008.
  41. ^ a b c Naumov, A. V. (2007). “Rhythms of rhenium”. Russian Journal of Non-Ferrous Metals. 48 (6): 418–423. doi:10.3103/S1067821207060089.
  42. ^ a b c Magyar, Michael J. “Mineral Yearbook: Rhenium” (PDF). USGS.
  43. ^ Bhadeshia, H. K. D. H. “Nickel Based Superalloys”. Đại học Cambridge. Truy cập ngày 17 tháng 10 năm 2008.
  44. ^ B. Cantor & Grant Patrick Assender Hazel (2001). Aerospace Materials: An Oxford-Kobe Materials Text. CRC Press. tr. 82–83. ISBN 9780750307420.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  45. ^ Erik Lassner & Schubert Wolf-Dieter (1999). Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer. tr. 256. ISBN 9780306450532.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  46. ^ Pam Cherry & Duxbury Angela (1998). Practical radiotherapy physics and equipment. Nhà in Đại học Cambridge. tr. 55. ISBN 9781900151061.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  47. ^ R. Asamoto & Novak P. E. (1968). “Tungsten-Rhenium Thermocouples for Use at High Temperatures”. Review of Scientific Instruments. 39: 1233. doi:10.1063/1.1683642.Quản lý CS1: sử dụng tham số tác giả (liên kết)[liên kết hỏng]
  48. ^ Blackburn, Paul E. (1966). “The Vapor Pressure of Rhenium”. The Journal of Physical Chemistry. 70: 311–312. doi:10.1021/j100873a513.
  49. ^ G. D. Earle;Medikonduri R.; Rajagopal N.; Narayanan V.; Roddy P. A. (2005). “Tungsten-Rhenium Filament Lifetime Variability in Low Pressure Oxygen Environments”. IEEE Transactions on Plasma Science. 33 (5): 1736–1737. doi:10.1109/TPS.2005.856413.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  50. ^ Ede, Andrew (2006). The chemical element: a historical perspective. Greenwood Publishing Group. ISBN 9780313333040.
  51. ^ Ryashentseva, Margarita A. (1998). “Rhenium-containing catalysts in reactions of organic compounds”. Russian Chemical Reviews. 67: 157–177. doi:10.1070/RC1998v067n02ABEH000390.
  52. ^ Mol, Johannes C. (1999). “Olefin metathesis over supported rhenium oxide catalysts”. Catalysis Today. 51 (2): 289–299. doi:10.1016/S0920-5861(99)00051-6.
  53. ^ T. N. Angelidis & Rosopoulou D. Tzitzios V. (1999). “Selective Rhenium Recovery from Spent Reforming Catalysts”. Ind. Eng. Chem. Res. 38 (5): 1830–1836. doi:10.1021/ie9806242.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  54. ^ Burch, Robert (1978). “The Oxidation State of Rhenium and Its Role in Platinum-Rhenium” (PDF). Platinum Metals Review. 22 (2): 57–60. Bản gốc (PDF) lưu trữ ngày 31 tháng 1 năm 2013. Truy cập ngày 15 tháng 7 năm 2009.
  55. ^ a b Jonathan R. Dilworth & Parrott Suzanne J. (1998). “The biomedical chemistry of technetium and rhenium”. Chemical Society Reviews. 27: 43–55. doi:10.1039/a827043z.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  56. ^ “The Tungsten-188 and Rhenium-188 Generator Information”. Oak Ridge National Laboratory. 2005. Bản gốc lưu trữ ngày 9 tháng 1 năm 2008. Truy cập ngày 3 tháng 2 năm 2008. Đã bỏ qua tham số không rõ |= (trợ giúp)
  57. ^ Colton R. & Peacock R. D. (1962). “An outline of technetium chemistry”. Quarterly Reviews Chemical Society. 16: 299–315. doi:10.1039/QR9621600299.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  58. ^ Emsley, J. (2003). “Rhenium”. Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, Anh: Nhà in Đại học Oxford. tr. 358–361. ISBN 0198503407.
  59. ^ Thomas J. Haley & Cartwright Frank D. (1968). “Pharmacology and toxicology of potassium perrhenate and rhenium trichloride”. Journal of Pharmaceutical Sciences. 57 (2): 321–323. doi:10.1002/jps.2600570218.Quản lý CS1: sử dụng tham số tác giả (liên kết)

Liên kết ngoài

sửa