Tập tin:Prime number theorem absolute error.svg

Tập tin gốc (tập tin SVG, 283×178 điểm ảnh trên danh nghĩa, kích thước: 94 kB)

Miêu tả

Miêu tả
English: A log-log plot showing the absolute error of two estimates to the prime-counting function , given by and . The x axis is and is logarithmic (labelled in evenly spaced powers of 10), going up to 1024, the largest for which is currently known. The y axis is also logarithmic, going up to the absolute error of at 1024. The error of both functions appears to increase as a power of , with Li(x)'s power being smaller; both clearly diverge. The error of Li(x) appears to smooth out after 109 but this is an artifact due to less data availability for in the larger region. Source used to generate this chart is shown below.
Ngày
Nguồn gốc Tác phẩm được tạo bởi người tải lên
Tác giả Dcoetzee
SVG genesis
InfoField
 
The SVG code is valid.
 
This trigonometry was created with Mathematica.
 
and with Inkscape.
 
 This trigonometry uses embedded text that can be easily translated using a text editor.
Mã nguồn
InfoField

Mathematica code

base = N[][10]/600)];
diffs = Table[][base^x], 
    N[][][base^x] - (base^x/(x*Log[base]))]}, {x, 1, 
    Floor[][2, base]}];
diffsli = 
  Table[][base^x], 
    N[][][base^x] - (LogIntegral[base^x] - LogIntegral[2])]}, {x, 
    Ceiling[][base, 2], Floor[][2, base]}];
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
     29844570422669}, {10^16, 279238341033925}, {10^17, 
    2623557157654233}, {10^18, 24739954287740860}, {10^19, 
    234057667276344607}, {10^20, 2220819602560918840}, {10^21, 
    21127269486018731928}, {10^22, 201467286689315906290}, {10^23, 
    1925320391606803968923}, {10^24, 18435599767349200867866}};
diffs2 = Abs[][][][[1]], N[][[2]]] - (#[[1]]/(Log[][[1]]]))} &, 
     LargePiPrime]]];
diffsli2 = 
  Abs[][][][[1]], 
       N[][[2]]] - (LogIntegral[][[1]]] - LogIntegral[2])} &, 
     LargePiPrime]]];
(* Plot with log x axis, together with the horizontal line y=1 *)
Show[][1, {x, 1, 10^24}, PlotRange -> {1, 10^21}], 
 ListLogLogPlot[{diffs2, diffsli2}, Joined -> True, 
  PlotRange -> {1, 10^21}], LabelStyle -> FontSize -> 14]

LaTeX source for labels code

$$ {\pi(x)} - {\frac{x}{\ln x}} $$
$$ {\int_2^x \frac{1}{\ln t} \mathrm{d}t} - {\pi(x)} $$

Giấy phép

Tôi, người giữ bản quyền tác phẩm này, từ đây phát hành nó theo giấy phép sau:
Creative Commons CC-Zero Tập tin này được phân phối theo Creative Commons Hiến tặng vào Phạm vi Công cộng Toàn thế giới CC0.
Người nào gán tài liệu này với tác phẩm nghĩa là đã hiến tác phẩm cho phạm vi công cộng bằng cách từ bỏ mọi quyền lợi của người đó đối với tác phẩm theo quy định của luật bản quyền, có hiệu lực trên toàn thế giới và các quyền lợi pháp lý phụ mà người đó có được trong tác phẩm, đến mức độ mà luật pháp cho phép. Bạn được tự do sao chép, phân phối, và biểu diễn tác phẩm này, tất cả đều không bắt buộc ghi công.

Source

All source released under CC0 waiver.

Mathematica source to generate graph (which was then saved as SVG from Mathematica):


These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif in Inkscape.

Chú thích

Ghi một dòng giải thích những gì có trong tập tin này

Khoản mục được tả trong tập tin này

mô tả

Lịch sử tập tin

Nhấn vào ngày/giờ để xem nội dung tập tin tại thời điểm đó.

Ngày/giờHình xem trướcKích cỡThành viênMiêu tả
hiện tại14:47, ngày 21 tháng 3 năm 2013Hình xem trước của phiên bản lúc 14:47, ngày 21 tháng 3 năm 2013283×178 (94 kB)Dcoetzee== {{int:filedesc}} == {{Information |Description ={{en|1=A log-log plot showing the absolute error of two estimates to the prime-counting function <math>\pi(x)</math>, given by <math>\frac{x}{\ln x}</math> and <math>\int_2^x \frac{1}{\ln t} \mathrm...
Có 1 trang tại Wikipedia tiếng Việt có liên kết đến tập tin (không hiển thị trang ở các dự án khác):

Sử dụng tập tin toàn cục

Những wiki sau đang sử dụng tập tin này:

Đặc tính hình