Trong hình học Euclid, định lý Stewart là đẳng thức miêu tả mối quan hệ độ dài giữa các cạnh trong tam giác với đoạn thẳng nối một đỉnh với một điểm nằm trên cạnh đối diện của tam giác đó. Định lý mang tên nhà toán học người Scotland Matthew Stewart, ông đã lần đầu tiên chứng minh định lý này vào năm 1746.[1]

Minh họa định lý Stewart.
Minh họa định lý Stewart.

Định lý

sửa

Gọi a, b, và cđộ dài các cạnh của 1 tam giác. Gọi d là độ dài của đoạn thẳng nối từ 1 đỉnh của tam giác với điểm nằm trên cạnh (ở đây là cạnh có độ dài là a) đối diện với đỉnh đó. Đoạn thẳng này chia cạnh a thành 2 đoạn có độ dài mn, định lý Stewart nói rằng:

 

Định lý Apollonius là trường hợp đặc biệt khi d là độ dài của đường trung tuyến tam giác.

Chứng minh

sửa

Một cách chứng minh định lý dựa vào định lý cos:[2]

Gọi θ là góc giữa 2 cạnh md và θ′ là góc giữa nd. Ta có θ′ là góc bù của θ và cos θ′ = −cos θ. Áp dụng định lý cos cho các góc θ và θ′ ta có

 

Nhân biểu thức thứ nhất với n, biểu thức thứ hai với m, rồi cộng lại ta có

 

Mở rộng

sửa

Định lý Stewart là trường hợp đặc biệt của định lý Feuerbach-Luchterhand và là mở rộng của các định lý Pytago, định lý Apollonius.

Xem thêm

sửa

Chú thích

sửa
  1. ^ M. Stewart Some General Theorems of Considerable Use in the Higher Parts of Mathematics (1746) "Proposition II"
  2. ^ Follows Hutton & Gregory or, more closely, PlanetMath.

Tham khảo

sửa
  • Hutton, C.; Gregory, O. (1843). A Course of Mathematics. II. Longman, Orme & co. tr. 219.
  • Weisstein, Eric W., "Stewart's Theorem" từ MathWorld.
  • Stewart's Theorem tại trang PlanetMath.org.
  • Proof of Stewart's Theorem tại trang PlanetMath.org.