Định lý Euler (hình học)

Trong hình học, định lý Euler nói về khoảng cách d giữa tâm đường tròn ngoại tiếptâm đường tròn nội tiếp của một tam giác thể hiện qua công thức sau:[1][2][3][4]

Trong đó lần lượt là bán kính đường tròn ngoại và nội tiếp của một tam giác. Định lý đặt tên theo nhà toán học Leonhard Euler, người công bố nó năm 1767.[5] Tuy nhiên, kết quả tương tự đã được nhà toán học người Anh William Chapple công bố trước Euler vào năm 1746[6]

Từ định lý trên ta có bất đẳng thức Euler:[2][3]

Đẳng thức xảy ra khi tam giáctam giác đều.[7]:trang 198

Một phiên bản mạnh hơn của bất đẳng thức Euler

sửa

Một phiên bản mạnh hơn của bất đẳng thức Euler như sau:[7]:trang 198

 

Chú thích

sửa
  1. ^ Johnson, Roger A. (2007) [1929], Advanced Euclidean Geometry, Dover Publ., tr. 186.
  2. ^ a b Alsina, Claudi; Nelsen, Roger (2009), When Less is More: Visualizing Basic Inequalities, Dolciani Mathematical Expositions, 36, Mathematical Association of America, tr. 56, ISBN 9780883853429.
  3. ^ a b Debnath, Lokenath (2010), The Legacy of Leonhard Euler: A Tricentennial Tribute, World Scientific, tr. 124, ISBN 9781848165250.
  4. ^ Dunham, William (2007), The Genius of Euler: Reflections on his Life and Work, Spectrum Series, 2, Mathematical Association of America, tr. 300, ISBN 9780883855584.
  5. ^ Euler, Leonhard (1767), “Solutio facilis problematum quorumdam geometricorum difficillimorum” (PDF), Novi Commentarii academiae scientiarum Petropolitanae (bằng tiếng La-tinh), 11: 103–123.
  6. ^ Chapple, William (1746), “An essay on the properties of triangles inscribed in and circumscribed about two given circles”, Miscellanea Curiosa Mathematica, 4: 117–124. The formula for the distance is near the bottom of p.123.
  7. ^ a b Svrtan, Dragutin; Veljan, Darko (2012), “Non-Euclidean versions of some classical triangle inequalities”, Forum Geometricorum, 12: 197–209, Bản gốc lưu trữ ngày 28 tháng 10 năm 2019, truy cập ngày 21 tháng 1 năm 2015.

Liên kết ngoài

sửa